import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# Создание
model = Sequential()
model.add(Dense(64, input_dim=10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Компиляция
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Обучение
model.fit(X_train, y_train, epochs=10, batch_size=10, validation_data=(X_test, y_test))
import openai
openai.api_key = 'ваш_ключ_API'
response = openai.Completion.create(
engine="davinci",
prompt="Сгенерируй текст на тему ИИ",
max_tokens=50
)
print(response.choices[0].text.strip())
from flask import Flask, request, jsonify
import tensorflow as tf
app = Flask(__name__)
# Загрузка модели
model = tf.keras.models.load_model('path/to/your/model')
@app.route('/predict', methods=['POST'])
def predict():
data = request.get_json(force=True)
prediction = model.predict(data['input'])
return jsonify({'prediction': prediction.tolist()})
if __name__ == '__main__':
app.run(debug=True)